Conformational Studies. Part 11.1 Crystal and Molecular Structure of the Anaesthetic, 3α-Hydroxy- 5α-pregnane-11,20-dione

By John M. Midgley and W. Basil Whalley,* School of Pharmacy, The University, London WC1N 1AX George Ferguson • and Wayne C. Marsh, Department of Chemistry, The University of Guelph, Guelph, Ontario N1 G 2W1, Canada

The title compound (1), $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{3}$. forms orthorhombic crystals, space group $P 2_{1} 2_{1} 2_{1}$, with $Z=4$ in a cell of dimensions $a=7.372(3), b=13.561(5), c=18.493(7) \AA$. The structure was determined by direct methods and refined by full-matrix least-squares calculations to $R 0.063$ for 1167 observed reflections. The conformation of each of the six-membered rings is a chair; that of the five-membered ring D is mid-way between a half-chair and a $\mathrm{C}(13)$ envelope. In the crystal the molecules are linked together in chains parallel to the b axis by weak $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds [$\mathrm{O} \cdots \mathrm{O} 2.95(1) \mathrm{A}$].

A NUMBER of 2α - and 2β-substituted derivatives of $3 \alpha-$ hydroxy- 5α-pregane-11,20-dione (1) exhibit anaesthetic activity. ${ }^{2}$ One of the active members of this group is

[^0]the parent compound itself, which comprises the main component of the now widely, clinically used anaesthetic, 'Althesin '. ${ }^{3}$ In view of our interest in the correlation

[^1]between structure, conformation, and various physical parameters of steroids it seemed of interest to investigate the structure of (1) by X-ray crystallography.

(1)

EXPERIMENTAL

Crystal Data. $-\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{3}, \quad M=332.5$. Orthorhombic, $a=7.372(3), b=13.561(5), c=18.493(7) \AA, U=1848.8$ $\AA^{3}, D_{\mathrm{m}}=1.20 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4, D_{\mathrm{c}}=1.19, F(000)=728$. Space group $P 2_{1} 2_{1} 2_{1}\left(D_{2}^{4}\right.$, No. 19) uniquely from systematic absences. Mo- K_{α} radiation, $\lambda=0.71069 \AA ; \mu\left(\mathrm{Mo}-K_{\alpha}\right)=$ $0.83 \mathrm{~cm}^{-1}$.

The crystal employed for data collection had dimensions $0.40 \times 0.20 \times 0.18 \mathrm{~mm}$. Intensities were measured on a Hilger and Watts Y290 PDP 8I controlled four-circle diffractometer, by use of approximately monochromatic zirconium-filtered Mo- K_{α} radiation as described previously. ${ }^{4}$ Data were corrected for Lorentz and polarzation effects but not for absorption, which is negligible. Of the 1498

Figure 13α-Hydroxy- 5α-pregnane-11,20-dione (1) showing the atom numbering scheme
unique reflections with $\theta \leqslant 23^{\circ}, 1167$ having intensities $>3.0 \sigma(I)$ were employed in the subsequent structure analysis and refinement.

The structure was solved by use of the program MULTAN ${ }^{5}$ with the $267 E$ values greater than 1.30 as input. The solution with the highest figure-of-merit and lowest residual yielded an E map, the top 24 peaks of which corresponded to the atomic positions in the molecule. The structure was refined by full-matrix least-squares calculations with the hydrogen atoms (in positions located from a difference-Fourier synthesis) included in the structurefactor calculation but excluded from the refinement. The carbon and oxygen atoms were allowed anisotropic vibration with the scattering factors of ref. 6; hydrogen atoms were only allowed isotropic thermal parameters with the scattering factors of ref. 7. The function minimised was $\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$, with $w=1 / \sigma^{2}\left(F_{\mathrm{o}}\right)$ derived from counting statistics. The final R was 0.082 for all reflections and 0.063 for the 1167 reflections with non-zero weight; the final value of $R^{\prime}\left\{\left[\Sigma w\left(F_{\mathrm{o}}-F_{\mathrm{c}}\right)^{2} / \Sigma w F_{\mathrm{o}}{ }^{2}\right]^{\frac{1}{2}}\right\}$ was 0.063 . A final difference-Fourier synthesis was essentially featureless with maximum fluctuations of $\pm 0.25 \mathrm{e}^{-3}$.

A view of the molecule is presented in Figure 1. Final

* See Notice to Authors No. 7 in J.C.S. Perkin II, 1977, Index issue.
${ }^{4}$ G. Ferguson, D. F. Rendle, J. M. Midgley, and W. B. Whalley, J.C.S. Perkin II, 1978, 267.
positional parameters are in Table 1 and the main interatomic distances and angles derived from these are in Table

Table 1
Final positional parameters (carbon and oxygen $\times 10^{4}$, hydrogen $\times 10^{\mathbf{3}}$), with estimated standard deviations in parentheses for (1)

Atom	x	y	z
$\mathrm{O}(1)$	2 600(10)	$4944(4)$	2 788(3)
$\mathrm{O}(2)$	-307(8)	856(4)	3334 (3)
$\mathrm{O}(3)$	$1737(9)$	-2301(4)	5609 (3)
$\mathrm{C}(1)$	$992(11)$	$2854(5)$	2885 (4)
C(2)	$1364(11)$	3 486(6)	2 216(4)
$\mathrm{C}(3)$	2 966(13)	$4156(6)$	2 285(5)
$\mathrm{C}(4)$	4 636(12)	3 605(6)	$2562(5)$
$\mathrm{C}(5)$	$4219(10)$	2986 (5)	3 244(4)
C(6)	5 923(11)	2492 (6)	3530 (4)
C(7)	5 566(11)	1939 (6)	4 237(4)
C(8)	4 047(10)	1183 (5)	4142 (4)
$\mathrm{C}(9)$	2 303(10)	$1694(5)$	$3839(4)$
C(10)	2 675(10)	2240 (5)	$3113(3)$
C(11)	703(10)	$1001(5)$	3 852(4)
C(12)	353(11)	426(5)	4555 (4)
$\mathrm{C}(13)$	2 078(10)	-115(5)	4782 (4)
$\mathrm{C}(14)$	3 601(11)	659(6)	4848 (4)
$\mathrm{C}(15)$	$5157(11)$	$72(6)$	5 226(4)
$\mathrm{C}(16)$	$4151(12)$	-671(7)	5 724(5)
$\mathrm{C}(17)$	$2129(12)$	-560(5)	$5561(4)$
$\mathrm{C}(18)$	2 502(12)	-924(5)	4 223(4)
C(19)	3170 (13)	1482 (6)	2 518(4)
C (20)	$1008(12)$	$-1499(5)$	5639 (4)
$\mathrm{C}(21)$	-994(12)	$-1397(6)$	5748 (5)
H(01)	175(18)	542(9)	265(6)
$\mathbf{H}(11)$	-19(14)	236(7)	279(5)
$\mathrm{H}(12)$	86(9)	326(4)	329 (3)
H(21)	$154(9)$	300(4)	172(3)
H(22)	38(9)	383(5)	$211(3)$
H(3)	308(9)	449(4)	183(3)
H(41)	506(10)	$309(5)$	213(3)
H(42)	552(9)	406(5)	268(3)
$\mathrm{H}(5)$	376(8)	345(4)	361 (3)
H(61)	646(11)	205(5)	317(4)
$\mathrm{H}(62)$	685(7)	297(4)	361 (3)
H(71)	648(11)	167(5)	441 (4)
$\mathrm{H}(72)$	500(12)	251 (6)	466(4)
H(8)	449 (10)	75(5)	379(4)
H (9)	197(7)	216(3)	417(3)
H(121)	-3(8)	80(4)	490 (3)
H(122)	-84(12)	-5(6)	452(4)
H(14)	$314(9)$	117(5)	526(3)
$\mathrm{H}(151)$	584(9)	-20(5)	487(3)
H(152)	596(10)	60(5)	547(3)
H(161)	476(16)	-132(8)	575 (6)
H(162)	408(13)	-41(7)	626(5)
H(17)	168(7)	-2(4)	588(3)
H(181)	147(12)	$-139(6)$	417(4)
H(182)	264(10)	-67(5)	375(3)
H(183)	370 (10)	-129(5)	433(4)
H(191)	213(10)	108(5)	253(4)
H(192)	318(13)	170 (6)	216 (4)
$\mathrm{H}(193)$	418(11)	103(6)	261(4)
H(211)	-134(13)	$-78(7)$	598(5)
H(212)	-162(19)	-207(9)	601 (6)
H(213)	-151(14)	$-153(7)$	528 (5)

2. Thermal parameters, $\mathrm{C}-\mathrm{H}$ distances and a listing of structure factors have been deposited as Supplementary Publication No. SUP 22269 (14 pp., 1 mircofiche).*

DISCUSSION

In the molecule rings A, B, and c have the expected chair conformation; the values of the cis-torsion angles
${ }^{5}$ G. Germain, P. Main, and M. M. Woolfson, Acta Cryst., 1971, A27, 368 .
${ }^{6}$ D. T. Cromer and J. B. Mann, Acta Cryst., 1968, A24, 321.
${ }^{7}$ R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.

Table 2
Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ for (1) (a) Bond lengths

$\mathrm{C}(1)-\mathrm{C}(2)$	1.530(11)	$\mathrm{C}(10)-\mathrm{C}(19)$	1.550(11)
$\mathrm{C}(1)-\mathrm{C}(10)$	1.553(11)	$\mathrm{C}(11)-\mathrm{O}(2)$	$1.223(9)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.495(12)$	$\mathrm{C}(11)-\mathrm{C}(12)$	1.539(10)
$\mathrm{C}(3)-\mathrm{O}(1)$	$1.442(10)$	$\mathrm{C}(12)-\mathrm{C}(13)$	1.526(11)
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.529(12)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.542(11)$
$\mathrm{C}(4)-\mathrm{C}(5)$	1.546(11)	C(13)-C(17)	1.563(10)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.518(11)	$\mathrm{C}(13)-\mathrm{C}(18)$	$1.540(10)$
$\mathrm{C}(5)-\mathrm{C}(10)$	1.542(10)	$\mathrm{C}(14)-\mathrm{C}(15)$	1.562(11)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.530 (12)	$\mathrm{C}(15)-\mathrm{C}(16)$	1.553(12)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.528(11)	$\mathrm{C}(16)-\mathrm{C}(17)$	$1.528(12)$
$\mathrm{C}(8)-\mathrm{C}(9)$	1.564(11)	$\mathrm{C}(17)-\mathrm{C}(20)$	1.525(11)
$\mathrm{C}(8)-\mathrm{C}(14)$	$1.522(10)$	$\mathrm{C}(20)-\mathrm{O}(3)$	1.216(9)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.557(10)	$\mathrm{C}(20)-\mathrm{C}(21)$	1.496(12)
$\mathrm{C}(9)-\mathrm{C}(11)$	1.508(10)		
(b) Bond angles			
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)$	112.2(6)	$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(19)$	109.7(6)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	114.4(7)	$\mathrm{O}(2)-\mathrm{C}(11)-\mathrm{C}(9)$	124.4(6)
$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	111.0(7)	$\mathrm{O}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	118.2 (6)
$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	107.3(7)	$\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{C}(12)$	117.4(6)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	111.6(7)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	109.6(6)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	112.2(7)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	107.6(6)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	111.0(6)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(17)$	117.3(6)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	112.0(6)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)$	109.1(6)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$	112.1(6)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(17)$	99.9(6)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	111.8(6)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)$	112.9(6)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	110.9(6)	$\mathrm{C}(17)-\mathrm{C}(13)-\mathrm{C}(18)$	109.8(6)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	110.3(6)	$\mathrm{C}(8)-\mathrm{C}(14)-\mathrm{C}(13)$	114.0(6)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(14)$	111.9(6)	$\mathrm{C}(8)-\mathrm{C}(14)-\mathrm{C}(15)$	117.6(6)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(14)$	109.6(6)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	102.9(6)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	112.0(6)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	104.2(6)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(11)$	111.2(6)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	106.6(7)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(11)$	116.6(6)	$\mathrm{C}(13)-\mathrm{C}(17)-\mathrm{C}(16)$	104.1(6)
$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(5)$	106.3(6)	$\mathrm{C}(13)-\mathrm{C}(17)-\mathrm{C}(20)$	113.4(6)
$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	110.4(6)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(20)$	115.3(7)
$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(19)$	110.5(6)	$\mathrm{O}(3)-\mathrm{C}(20)-\mathrm{C}(17)$	120.3(8)
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	107.9(5)	$\mathrm{O}(3)-\mathrm{C}(20)-\mathrm{C}(21)$	121.6(7)
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(19)$	111.9(6)	$\mathrm{C}(17)-\mathrm{C}(20)-\mathrm{C}(21)$	118.1(7)
(c) Shorter intermolecular contacts			
$\mathrm{O}(2) \cdots \mathrm{H}\left[\mathrm{O}\left(\mathbf{1}^{\mathrm{I}}\right)\right]$	2.19	$\mathrm{H}(72) \cdots \mathrm{H}\left(121^{\text {II }}\right.$)	2.43
$\mathrm{O}(2) \cdots \mathrm{O}\left(1^{\text {I }}\right.$)	2.948	$\mathrm{H}(183) \cdots \mathrm{H}\left(212^{\text {III }}\right.$)	2.33

Roman numeral superscripts refer to the following equivalent positions:

$$
\begin{aligned}
\text { I }-x,-\frac{1}{2}+y, \frac{1}{2}-z & \text { III } \frac{1}{2}+x,-\frac{1}{2}-y, 1-z \\
\text { II } \frac{1}{2}+x, \frac{1}{2}-y, 1-z &
\end{aligned}
$$

in ring в (Figure 2) are close to standard values ${ }^{8}$ whereas rings A and c exhibit some slight flattening in the region

Figure 2 Details of cis-torsion angles
of $C(3)$ and $C(9)$. There are no unusually short intramolecular contacts but the shortest intermolecular contacts in the crystal structure (Figure 3) involve the axial hydroxy-group at $\mathrm{C}(3)$ with the carbonyl at $\mathrm{C}(11)$ on an adjacent molecule ($\mathrm{O} \cdot \cdots$ O 2.95, H \cdots O $2.19 \AA$; $\mathrm{O}-\mathrm{H} \cdot \mathrm{O} \mathbf{1 3 7}^{\circ}$). Almost certainly this weak inter-
${ }^{8}$ H. J. Geise, C. Altona, and C. Romers, Tetrahedron, 1967, 23, 439.
molecular interaction is responsible for the slight flattening of ring a an increase in the $\mathrm{O}^{-} \mathrm{H} \cdots \mathrm{O}$ distance would lead to a more puckered (i.e. normal) ring A conformation. The same arguments can be applied

Figure 3 The molecular packing diagram for (1); dashed lines indicate $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds
to the ring c conformation but here the $s p^{2}$ hybridized atom $\mathrm{C}(11)$ will also be partly responsible for the slight flattening found. That relatively weak intermolecular interactions can cause small changes in steroid ring conformations has been noted previously in $17 \beta-$ bromoacetoxy-19-nor- 5α-androstan- 3 -one and 17β-bro-moacetoxy- 5α-androstan-3-one. ${ }^{4}$ The cis-torsion angles in ring D are consistent with a conformation intermediate between a half-chair and a $\mathrm{C}(13)$ envelope. In more quantitative terms the conformation may be expressed ${ }^{9}$ in terms of the phase angle, Δ, which is 22.4° and the angle of puckering $\phi_{m}, 47.1^{\circ}$.

The bond lengths do not differ significantly from expected values. ${ }^{10}$ Mean bond lengths are: $\mathrm{C}\left(s p^{3}\right)-$ $\mathrm{C}\left(s p^{3}\right) 1.539, \mathrm{C}\left(s p^{2}\right)-\mathrm{C}\left(s p^{3}\right)$ 1.517, $\mathrm{C}\left(s p^{2}\right)-\mathrm{O} 1.220$, and $\mathrm{C}\left(s p^{3}\right)-\mathrm{O} 1.442 \AA, \mathrm{C}-\mathrm{H} 0.99 \AA$.

The steroid (I) is thus devoid of unusual conformational features in both the solid state, and in solution. ${ }^{3}$ However, the energy of binding of (l) to the receptor is probably sufficient to modify the conformation of ring a and thus it may not be assumed that the presently defined conformation is necessarily that at the site of biological activity. Additionally the uniquely specific requirement for the 3α-hydroxy-group ${ }^{3}$ indicates the possibility that this substituent fits closely into a cavity on the receptor, to which point it is guided by the ' template' action of the steroid.

We thank Glaxo Research Limited, Greenford, England, for a specimen of 3α-hydroxy- 5α-pregnane-11,20-dione, the National Research Council of Canada for a grant (to G. F.), and Dr. G. H. Phillipps for helpful discussions.
[7/1962 Received, 7th November, 1977]
${ }^{9}$ C. Altona, H. J. Geise, and C. Romers, Tetrahedron, 1968, 24, 13.
${ }^{10}$ Chem. Soc. Special Publ., No. 18, 1965.

[^0]: ${ }^{1}$ Part 10, G. Ferguson, R. J. Restivo, G. A. Lane, J. M. Midgley, and W. B. Whalley, preceding paper.
 ${ }_{2}$ G. H. Phillipps, J. Steroid Biochem., 1975, 6, 607.

[^1]: ${ }^{3}$ B. Davis and D. R. Pearce, Postgrad. Medicin. J., 1972, 48, Suppl. (2), 13; K. J. Child, J. P. Currie, B. Davis, M. G. Dodds, D. R. Pearce, and D. J. Twissell, Br. J. Anaesth., 1971, 43, 2.

